如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,且,.(1)设点是上任一点,试求的最小值;(2)求证:、在以为直径的圆上;(3)求平面与平面所成的锐二面角的余弦值.
ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.
(10分)已知是公差不为零的等差数列,成等比数列. (Ⅰ)求数列的通项;(Ⅱ)求数列的前n项和
(本小题满分12分) 已知函数 (1)若,求曲线在点处的切线方程; (2)若函数在其定义域内为增函数,求的取值范围; (3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.
(本小题满分12分) 已知椭圆经过点其离心率为 (1)求椭圆的方程 (2)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点. 求到直线的距离的最小值.
(本小题满分12分) 某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示 (1)估计这次考试的及格率(分及以上为及格); (2) 假设在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从这个数中任取个数,求这个数恰好是两个学生的成绩的概率.