如图,已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E于A,B两点,线段AB的中点为M,直线:交椭圆E于C,D两点.(1)求椭圆E的方程;(2)求证:点M在直线上;(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理由.
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上). (I)求过点P且焦点在x轴上抛物线的标准方程; (II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
已知函数 (I)若,判断函数在定义域内的单调性; (II)若函数在内存在极值,求实数m的取值范围。
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。 (I)求证:BF⊥平面DAF; (II)求多面体ABCDFE的体积。
已知函数 (I)若的最大值和最小值; (II)若的值。
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:
(I)在下图中补齐频率分布直方图; (II)估计元件寿命在500800h以内的概率。