(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.
空间四边形中,,分别是和的中点,,分别是和上的点,且.求证:,,三条直线相交于一点.
已知正方体中,,分别为,的中点,,.求证: (1),,,四点共面; (2)若交平面于点,则,,三点共线.
如图,是上的直径,点是上的动点,过动点的直线垂直于所在平面,,分别是,的中点,试判断直线与平面的位置关系,并说明理由.
如图,梯形的顶点与顶点分别在平面的两侧,且梯形的两边与分别与交于两点;梯形的另两条边的延长线分别与交于两点,求证:四点共线.
如图所示,已知四棱锥中,底面为正方形,侧面为正三角形,且平面底面,为中点,求证: (1)平面;(2)平面平面.