如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于半圆所在的平面,且.(1)求证:;(2)若异面直线和所成的角为,求平面与平面所成的锐二面角的余弦值.
(本小题满分14分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点.①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.
(本小题满分12分)如图,四边形为矩形,平面,,平面于点,且点在上.(Ⅰ)求证:;(Ⅱ)求四棱锥的体积;(Ⅲ)设点在线段上,且,试在线段上确定一点,使得平面.
(本小题满分12分)设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足:(为常数,且,). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
(本小题满分12分)已知函数,,将函数向左平移个单位后得函数,设三角形三个角、、的对边分别为、、.(Ⅰ)若,,,求、的值;(Ⅱ)若且,,求的取值范围.
(本小题满分12分)已知关于的一元二次函数(Ⅰ)设集合和,分别从集合和中随机取一个数作为和,求函数在区间[上是增函数的概率;(Ⅱ)设点是区域内的随机点,记有两个零点,其中一个大于,另一个小于,求事件发生的概率.