某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有、两个定点投篮位置,在点投中一球得2分,在点投中一球得3分.其规则是:按先后再的顺序投篮.教师甲在和点投中的概率分别是,且在、两点投中与否相互独立.(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.
如图,为圆的直径,点、在圆上,,矩形的边垂直于圆所在的平面,且,. (1)求证:平面; (2)设的中点为,求证:平面; (3)求三棱锥的体积.
已知在中,a,b,c分别为角A,B,C所对的边,向量, (1)求角B的大小; (2)若角B为锐角,,求实数b的值。
“五·一”放假期间,某旅行社共组织名游客,分三批到北京、香港两地旅游,为了做好游客的行程安排,旅行社对参加两地旅游的游客人数进行了统计,列表如下:
已知在参加北京、香港两地旅游的名游客中,第二批参加北京游的频率是. (1)现用分层抽样的方法在所有游客中抽取名游客,协助旅途后勤工作,问应在第三批参加旅游的游客中抽取多少名游客? (2)已知,,求第三批游客中到北京旅游人数比到香港旅游人数多的概率.
等比数列中,已知 1)求数列的通项 2)若等差数列,,求数列前n项和,并求最大值
已知数列满足,数列满足,数列满足. (1)求数列的通项公式; (2)试比较与的大小,并说明理由; (3)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢? 若会,求出的取值范围;若不会,请说明理由.