某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有、两个定点投篮位置,在点投中一球得2分,在点投中一球得3分.其规则是:按先后再的顺序投篮.教师甲在和点投中的概率分别是,且在、两点投中与否相互独立.(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.
如图,已知 △ A B C 的两条角平分线 A D 和 C E 相交于 H , ∠ B = 60 ° , F 在 A C 上,且 A E = A F .
(Ⅰ)证明: B 、 D 、 H 、 E 四点共圆; (Ⅱ)证明: C E 平分 ∠ D E F .
在极坐标系下,已知圆O:和直线,(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
对于任意实数和,不等式恒成立,试求实数的取值范围.
已知函数(1)若函数在定义域内单调递增,求的取值范围;(2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)设各项为正的数列满足:求证:
如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且,(1)求的长度.(2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度