如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.
已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.
将一幅三角板Rt△ABC和Rt△DEF按如图1摆放,点E, A, D, B在一条直线上,且D是AB的中点,将Rt△DEF绕点D顺时针方向旋转(0°<<90°)角,在旋转过程中,直线DE与AC相交于点M,直线DF与BC相交于点N,分别过点M, N作直线AB的垂线,垂足分别为G, H.(1)当=30°时(如图2),求证:AG=DH;(2)当=60°时(如图3),(1)中的结论是否仍成立?请写出你的结论,并说明理由.
如图,在平面直角坐标系中,以点M(0,)为圆心,作⊙M交x轴于A、B两点,交y轴于C、D两点,连结AM并延长交⊙M于点P,连结PC交x轴于点E,连结DB,∠BDC=30°.(1)求弦AB的长;(2)求直线PC的函数解析式;(3)连结AC,求△ACP的面积.
已知一元二次方程有两个实数根.(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与有一个相同的根,求此时的值.
美化城市,改善人们的居住环境已成为城市建设的一项重要内容,南沙区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图所示)(1)根据图中所提供的信息,回答下列问题:2011年的绿化面积为 公顷,比2010年增加了 公顷。(2)为满足城市发展的需要,计划到2013年使城区绿化地总面积达到72.6公顷,试求这两年(2011~2013)绿地面积的年平均增长率。