学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。(1)求每天的销售利润为y与每支定价x之间的函数关系式;(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.现将线段AC沿AD折叠后,使得点C落在AB上,求折痕AD的长度.
如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠ A的度数.
如图,△ABC是等边三角形,△ADE是等腰三角形,AD=AE,∠DAE=80°,当DE⊥AC时,垂足为F,求∠BAD和∠EDC的度数.
如图,方格纸中每个小正方形的边长均为1,线段AB和PQ的端点均在小正方形的顶点上.(1)在线段PQ上确定一点C(点C在小正方形的顶点上).使△ABC是轴对称图形,并在网格中画出△ABC;(2)请直接写出△ABC的周长和面积.