如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线.(1)求圆的方程及曲线的轨迹方程;(2)若直线和分别交曲线于点、和、,求四边形的周长;(3)已知曲线为椭圆,写出椭圆的对称轴、顶点坐标、范围和焦点坐标.
(本小题满分12分)如图,在棱长为2的正方体中,点E,F分别是棱AB,BC上的动点,且AE=BF.(Ⅰ)求证:A1FC1E;(Ⅱ)当三棱锥的体积取得最大值时,求二面角的正切值.
(本小题满分12分)已知等差数列{an}的首项为1,前n项和为,且S1,S2,S4成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)记为数列的前项和,是否存在正整数n,使得?若存在,求的最大值;若不存在,说明理由.
(本小题满分11分)已知函数的在区间上的最小值为0.(Ⅰ)求常数a的值;(Ⅱ)当时,求使成立的x的集合.
(本小题满分14分)已知函数,其中为自然对数的底数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;(Ⅲ)试探究当时,方程解的个数,并说明理由.
(本小题满分12分)已知函数在同一半周期内的图象过点,其中为坐标原点,为函数图象的最高点,为函数的图象与轴的正半轴的交点.(Ⅰ)求证:为等腰直角三角形.(Ⅱ)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线上(如图所示),试判断点是否也落在曲线上,并说明理由.