(本小题满分12分)已知等差数列{an}的首项为1,前n项和为,且S1,S2,S4成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)记为数列的前项和,是否存在正整数n,使得?若存在,求的最大值;若不存在,说明理由.
已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
已知椭圆()的右焦点为,离心率为.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围
已知函数.(Ⅰ)若点在角的终边上,求的值; (Ⅱ)若,求的值域.
已知数列,满足,其中.(Ⅰ)若,求数列的通项公式;(Ⅱ)若,且.(ⅰ)记,求证:数列为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.
一个袋中装有个形状大小完全相同的小球,球的编号分别为.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率;(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.