已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN//平面PMB;(2)证明:平面PMB平面PAD.
如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一点. ⑴求证:; ⑵确定点在线段上的位置,使//平面,并说明理由. ⑶当二面角的大小为时,求与底面所成角的正切值.
(本题满分12分) 2010年上海世博会上展馆与展馆位于观光路的同侧,在观光路上相距千米的两点分别测得,(在同一平面内),求展馆之间的距离.
(本小题满分12分) 已知函数是的导函数. (1)若,求的值. (2)求函数()的单调增区间。
(本小题满分12分)已知函数(). (1)试讨论在区间上的单调性; (2)当时,曲线上总存在相异两点,,使得曲线在点,处的切线互相平行,求证:.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,. (1)求证:; (2)求直线与平面所成角的正弦值; (3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.