为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
(本小题满分14分)已知全集,集合,,(1)求、;(2)若集合是集合的子集,求实数的取值范围.
(本小题满分14分)(1)化简:;(2)已知求的值.
(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.(I)证明:EM⊥BF;(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.(1)求直线C与平面ABCD所成角的正弦的值;(2)求证:平面A B1D1∥平面EFG; (3)求证:平面AA1C⊥面EFG .
(本大题10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.