某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为米,钢筋网的总长度为米.(1)列出与的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?(3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
设是函数的两个极值点,且, (1)证明:; (2)证明:。
已知二次函数的图像经过点,且点M在轴的下方, (1)求证:的图像与轴交于不同的两点; (2)设的图像与轴交于点,求证:介于之间。
已知数列满足,其中为的前项和, (1)用; (2)证明数列是等比数列; (3)求和。
在△ABC中,, (1)求角C的大小; (2)若△ABC最大边的边长为,求最小边的边长。
(本小题满分12分)设数列和满足:,数列是等差数列,为数列的前项和,且, (I)求数列和的通项公式; (II)是否存在,使?若存在,求出,若不存在,说明理由。