在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.(1)求圆C的极坐标方程;(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
已知证明:
设函数为奇函数. (Ⅰ)求实数的值; (Ⅱ)用定义法判断在其定义域上为增函数
已知a、b、c成等差数列且公差,求证:、、不可能成等差数列
在锐角三角形中,求证:
对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数. (1) 若函数为理想函数,求的值; (2)判断函数()是否为理想函数,并予以证明;