在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.(1)求圆C的极坐标方程;(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
、、为内角,为外接圆半径,为内切圆半径。 (1)求证:; (2)求证:。
如图,正方形所在的平面与平面垂直,是和交点,且. (1)求证:⊥平面; (2)求直线与平面所成角的大小;
甲乙两位学生参加数学竞赛培训,在培训期间他们参加5次预赛成绩记录如下: 甲: 78 76 74 90 82 乙: 90 70 75 85 80 (1)用茎叶图表示这两组数据; (2)从甲乙两人成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
已知函数 (1)若函数在上为增函数,求实数的取值范围; (2)当时,求在上的最大值和最小值; (3)当时,求证对任意大于1的正整数,恒成立.
过点的椭圆的离心率为,椭圆与轴交于两点,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点 (1)当直线过椭圆的右焦点时,求线段的长; (2)当点异于点时,求证:为定值