设函数(1)若关于x的不等式在有实数解,求实数m的取值范围;(2)设,若关于x的方程至少有一个解,求p的最小值.(3)证明不等式:
指出函数f(x)=的单调区间,并比较f(-π)与f(-)的大小
如果幂函数f(x)=x-p2+p+(p∈Z)在(0,+∞)是增函数,且是偶函数.求p的值,并写出相应的函数f(x)的解析式
已知a为实数,f(x)=(x2-4)(x-a).(1)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;(2)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围
已知函数f(x)=x2+ln x-1.(1)求函数f(x)在区间[1,e](e为自然对数的底)上的最大值和最小值;(2)求证:在区间(1,+∞)上,函数f(x)的图象在函数g(x)=x3的图象的下方(3)(理)求证:[f′(x)]n-f′(xn)≥2n-2(n∈N*)
已知函数f=x++b,其中a,b∈R.(1)若曲线y=f在点P处的切线方程为y=3x+1,求函数f的解析式;(2)讨论函数f的单调性;(3)若对于任意的a∈,不等式f≤10在上恒成立,求b的取值范围.