(本小题满分10分)选修4—4:坐标系与参数方程 已知在直角坐标系中,曲线的参数方程为 为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为,. (Ⅰ)求曲线直角坐标方程,并说明方程表示的曲线类型; (Ⅱ)若曲线、交于A、B两点,定点,求的最大值.
已知的顶点、、,边上的中线所在直线为.(Ⅰ) 求的方程;(Ⅱ) 求点关于直线的对称点的坐标.
设,(1)若在上无极值,求值;(2)求在上的最小值表达式;(3)若对任意的,任意的,均有成立,求的取值范围.
已知函数,(1)若,求的单调区间;(2)若函数存在两个极值点,且都小于1,求的取值范围;
已知为奇函数的极大值点,(1)求的解析式;(2)若在曲线上,过点作该曲线的切线,求切线方程.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式;(2)当为何值时,有最大值,并求出该最大值.