如图,四边形内接于⊙,过点作⊙的切线交的延长线于,已知.证明:(1);(2).
17. (本小题满分13分)某工厂在试验阶段大量生产一种零件.这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(1) 求一个零件经过检测为合格品的概率是多少?(2) 任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
16. (本小题满分13分)设集合,若,求实数a的取值范围.
21. (本小题满分13分)设是函数的两个极值点,且. (1)求证:;(2)求的取值范围;(3)若函数,当且时,求证:.
20. (本小题满分13分)已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.(1)求a的值;(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
(本小题满分14分)一束光线通过点M(-3,3)射到x轴上,然后反射到圆C上,其中圆C满足以下条件:过点A(1,2)和点B(2,3)且圆心在直线上。(1)求圆C的方程;(2)求通过圆C圆心的反射光线所在直线的方程;(3)若反射光线所在直线与圆C相切,求入射光线所在直线的方程