(本小题满分12分)已知在椭圆中,分别为椭圆的左右焦点,直线过椭圆右焦点,且与椭圆的交点为(点在第一象限),若.(Ⅰ)求椭圆的方程;(Ⅱ)直线与轴分别交于两点A、B,且满足,延长,分别交椭圆于两点,判断直线的斜率是否为定值,并说明理由.
已知某圆的极坐标方程是,求: (1)求圆的普通方程和一个参数方程; (2)圆上所有点中的最大值和最小值.
如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E. (1)求证:△ABE≌△ACD; (2)若AB=6 cm,BC=4 cm,求AE的长.
为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关? ⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望. 附:,其中
函数 (1)a=0时,求f(x)最小值; (2)若f(x)在是单调减函数,求a的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球. (1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率; (3)设为取出的4个球中红球的个数,求的分布列和数学期望