(本小题满分10分)选修4—4:坐标系与参数方程 已知在直角坐标系中,曲线的参数方程为 为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为,. (Ⅰ)求曲线直角坐标方程,并说明方程表示的曲线类型; (Ⅱ)若曲线、交于A、B两点,定点,求的最大值.
如图,在正方体ABCD-A1B1C1D1中, (1)如果连接交于点,证明平面 (2)求直线与平面所成的角.
如图,空间四边形ABCD中,,,分别是AB,BC,CD的中点,求证: (1)AC∥平面; (2)BD∥平面.
已知函数f ()=, 若2)=1; (1) 求a的值; (2)解不等式.
(本小题满分12分)已知,其中均为实数, (Ⅰ)求的极值; (Ⅱ)设, 求证:对恒成立; (Ⅲ)设,若对给定的,在区间上总存在使得成立,求m的取值范围.
(本小题满分12分)如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且 (Ⅰ)求椭圆的标准方程; (Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.