已知椭圆:的短轴长为,且斜率为的直线过椭圆的焦点及点.(1)求椭圆的方程;(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.(ⅰ)若满足(为坐标原点),求的面积;(ⅱ)若直线与两坐标轴都不垂直,点在轴上,且使为的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.
如图,在直三棱柱中,,,且是中点.(I)求证:平面;(Ⅱ)求证:平面.
用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)(Ⅰ)求,;(Ⅱ)若从高二、高三年级抽取的人中选人,求这2人都来自高二年级的概率.
已知函数(Ⅰ)若求的值域;(Ⅱ)△ABC中,角A,B,C的对边为a,b,c,若求的值.
设函数.(I)解不等式;(II)求函数的最小值.
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于两点,求.