已知椭圆:的短轴长为,且斜率为的直线过椭圆的焦点及点.(1)求椭圆的方程;(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.(ⅰ)若满足(为坐标原点),求的面积;(ⅱ)若直线与两坐标轴都不垂直,点在轴上,且使为的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.
指出函数f(x)=的单调区间,并比较f(-π)与f(-的大小.
已知f(x)=(n=2k,k∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)>f(x+3).
求函数y=(m∈N)的定义域、值域,并判断其单调性.
已知幂函数y=x的图象与x、y轴都无公共点,且关于y轴对称,求整数n的值并画出该函数的草图.
已知函数f(x)=(m2+2m)·x,m为何值时,f(x)是 (1)幂函数; (2)正比例函数; (3)反比例函数; (4)二次函数.