设二阶矩阵,满足,,求.
已知公差不为零的等差数列的前项和且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前项和,若对任意恒成立,求实数的最小值.
已知函数.(Ⅰ)解不等式;(Ⅱ)设正数满足,若不等式对任意都成立,求实数的取值范围.
已知等比数列满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的正整数n的最小值.
在中,内角,,对应的边分别为,,(),且.(Ⅰ)求角;(Ⅱ)求证:;(Ⅲ)若,且边上的中线长为,求的面积.
已知,函数的最小值为4.(Ⅰ)求的值;(Ⅱ)求的最小值.