设命题p:函数在上是增函数;命题q:方程有两个不相等的负实数根。求使得pq是真命题的实数对为坐标的点的轨迹图形及其面积。
已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM ≌△CFN;(2)求证:四边形BMDN是平行四边形.
计算:.
已知.(1) 求函数在上的最小值;(2) 对一切,恒成立,求实数a的取值范围;(3) 证明:对一切,都有成立.
设函数(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当≥0时f(x)≥0,求a的取值范围。
如图,正方形与梯形所在的平面互相垂直,,∥,,点在线段上.(I)当点为中点时,求证:∥平面;(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.