如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.(1) 证明://平面;(2) 证明:平面;(3)当时,求三棱锥的体积
(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示. (Ⅰ) 完成2×2列联表;
(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
(参考公式:,)
(本小题满分12分)已知,试证明至少有一个不小于1.
(本小题共13分)用表示不大于的最大整数.令集合,对任意和,定义,集合,并将集合中的元素按照从小到大的顺序排列,记为数列.(Ⅰ)求的值;(Ⅱ)求的值; (Ⅲ)求证:在数列中,不大于的项共有项.
(本小题共14分)已知抛物线P:x2="2py" (p>0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.
(本小题共13分)已知函数.(Ⅰ)若在处取得极值,求a的值;(Ⅱ)求函数在上的最大值.