如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证:AG平面BDE;(2)求:二面角GDEB的余弦值.
某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人). (1)共有多少种安排方法? (2)其中甲、乙两人都被安排的概率是多少? (3)甲、乙两人中至少有一人被安排的概率是多少?
已知函数,①求函数的单调区间;②求函数的极值,③当时,求函数的最大值与最小值.
已知复数,当实数取什么值时,复数是: (1)零; (2)虚数; (3)纯虚数.
已知椭圆:(),直线为圆:的一条切线并且过椭圆的右焦点,记椭圆的离心率为. (1)求椭圆的离心率的取值范围; (2)若直线的倾斜角为,求的大小; (3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.
已知是实数,函数. (1)求函数的单调区间; (2)设为在区间上的最小值. (i)写出的表达式;(ii)求的取值范围,使得.