设函数. (1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围; (2)当a=1时,求函数在区间[t,t+3]上的最大值.
已知等比数列各项都是正数,,,.(1)求数列的通项公式;(2)求证:.
如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,,∥,.(1)求证:;(2)求直线与平面所成角的正切值;(3)在上找一点,使得∥平面ADEF,请确定M点的位置,并给出证明.
如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中以表示.(1)如果乙组同学投篮命中次数的平均数为,求及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为17的概率.
在中,角A,B,C的对边分别为a,b,c,已知,.(1)求的值;(2)若为的中点,求、的长.
已知函数,.(1)若直线恰好为曲线的切线时,求实数的值;(2)当,时(其中无理数),恒成立,试确定实数的取值范围.