设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.(1)求证:=1;(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.
、已知函数 (1)求函数的最大值及对应的的取值集合 (2)在给定的坐标系中,画出函数上的图象
、已知 (1)求 (2)求
如图,在四边形ABCD中,,
(本小题满分12分) 已知椭圆C:(常数),P是曲线C上的动点,M是曲线C的右 顶点,定点A的坐标为(2,0). (1)若M与A重合,求曲线C的焦点坐标. (2)若,求|PA|的最大值与最小值. (3)若|PA|最小值为|MA|,求实数的取值范围.
(本小题满分12分) 已知函数,且为奇函数. (1)求的值. (2)求函数的单调区间