如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)写出曲线的普通方程,并说明它表示什么曲线;(2)过点作倾斜角为的直线与曲线相交于两点,求线段的长度和的值.
.(1)求的单调区间;(2)求函数在上的最值.
求证:.
已知数列的前n项和满足(1)写出数列的前3项、、;(2)求数列的通项公式;(3)证明对于任意的整数有
设函数(1)画出的简图;(2)若方程有三个不等实根,求k值的集合;(3)如果时,函数的图象总在直线的下方,试求出k值的集合。