某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?
某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元. (1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场? (2)若球场每平方米的综合费用不超过820元,最多建几座网球场?
在中,分别是角A,B,C的对边,且满足. (1)求角B的大小; (2)若最大边的边长为,且,求最小边长.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
如图,已知椭圆:的离心率为 ,点为其下焦点,点为坐标原点,过的直线 :(其中)与椭圆相交于两点,且满足:. (1)试用 表示 ; (2)求 的最大值; (3)若 ,求 的取值范围.
已知函数. (1)解关于的不等式; (2)若在区间上恒成立,求实数的取值范围.