在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种?(3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?
已知函数(为自然对数的底数). (1)求的最小值; (2)不等式的解集为,若且求实数的取值范围; (3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
(1)求的标准方程; (2)设直线与椭圆交于不同两点且,请问是否存在这样的 直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数.并说明它在乙组数据中的含义; (2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由; (3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
如图的多面体是底面为平行四边形的直四棱柱,经平面所截后得到的图形.其中,,. (1)求证:平面; (2)求平面与平面所成锐二面角的余弦值.
(本题满分12) 已知,其中.若图象中相邻的对称轴间的距离不小于. (1)求的取值范围 (2)在中,分别为角的对边.且,当最大时.求面积.