已知点在圆上运动,,点为线段MN的中点.(1)求点的轨迹方程;(2)求点到直线的距离的最大值和最小值..
如图,边长为2的正方形所在的平面与平面垂直,与的交点为, ,且.(1)求证:平面;(2)求直线与平面所成线面角的正切值.
在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线.(1)求角的大小;(2)如果,且,求的值.
设向量(1)若;(2)设函数的最大值.
为了考察冰川的融化状况,一支科考队在某冰川上相距8 km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为轴,线段AB的垂直平分线为轴建立平面直角坐标系(如图).考察范围为到A,B两点的距离之和不超过10 km的区域.(1)求考察区域边界曲线的方程;(2)如图所示,设线段是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2 km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上?
在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线与轨迹交于两点.(1)求出轨迹的方程; (2)若,求弦长的值.