如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
如图,在凸四边形中,为定点,为动点,满足.(I)写出与的关系式;(II)设的面积分别为和,求的最大值.
已知等差数列,公差,前n项和为,,且满足成等比数列.(I)求的通项公式;(II)设,求数列的前项和的值.
已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.
某家具厂生产一种儿童用组合床柜的固定成本为20000元,每生产一组该组合床柜需要增加投入100元,已知总收益满足函数:,其中是组合床柜的月产量.(1)将利润元表示为月产量组的函数;(2)当月产量为何值时,该厂所获得利润最大?最大利润是多少?(总收益=总成本+利润).
已知在棱长为2的正方体中,为的中点.(1)求证:∥;(2)求三棱锥的体积.