设函数.(1)求的最小正周期和值域;(2)在锐角△中,角的对边分别为,若且,,求和.
若函数y=f(x)=x2-2x+4的定义域、值域都是闭区间[2,2b],求b的值.
已知α,β是方程4x2-4tx-1=0(t∈R)的两个实数根,函数f(x)=的定义域为[α,β]. (1)判断f(x)在[α,β]上的单调性,并证明你的结论; (2)设g(t)=maxf(x)-minf(x),求函数g(t)的最小值
已知函数f(x)在(-1,1)上有定义,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f,试证明: (1)f(x)为奇函数; (2)f(x)在(-1,1)上单调递减.
在数列中,a1=2,an+1=4an-3n+1,n∈N*. (1)证明数列是等比数列; (2)求数列的前n项和Sn; (3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立
用反证法证明:如果a>b>0,那么>.