如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
如图所示,是一个矩形花坛,其中AB= 4米,AD = 3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于64平方米.(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
在ABC中,内角A,B,C的对边分别为a,b,c.已知,.(Ⅰ)求的值; (Ⅱ)若,求ABC的面积.
设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内.(Ⅰ)求的大小;(Ⅱ)求点到直线的距
数列的前n项和为,(I)证明:数列是等比数列;(Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.