已知椭圆的一个顶点为B(0,4),离心率,直线交椭圆于M,N两点。(1)若直线的方程为,求弦MN的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线方程的一般式。
(本小题满分12分) 一个多面体的直观图和三视图如图所示: (I)求证:PA⊥BD; (II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30o?若存在,求的值;若不存在,说明理由.
(本小题满分12分) 已知函数的图象的一部分如下图所示. (I)求函数的解析式; (II)求函数的最大值与最小值.
已知函数 (1)若x=2为的极值点,求实数a的值; (2)若在上为增函数,求实数a的取值范围; (3)当时,方程有实根,求实数b的最大值。
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点。 (1)求椭圆C的方程; (2)求的取值范围; (3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。
如图,在四棱锥P—ABCD中,底面ABCD是菱形,平面ABCD,E是PC的中点,F是AB的中点。 (1)求证:BE//平面PDF; (2)求证:平面平面PAB; (3)求平面PAB与平面PCD所成的锐二面角的大小。