已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
如图,是圆的直径,点在圆上,,交于点,平面,,,,. (1)证明:; (2)求三棱锥的体积.
从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195m之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人. (1)求第七组的频率并估计该校800名男生中身高在cm以上(含cm)的人数; (2)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,事件,求.
已知数列的前项和为,. (1)证明:数列是等差数列,并求; (2)设,求证:.
4-5:不等式选讲(本小题满分10分) 已知函数. (1)若是定义域为的奇函数,试求实数的值; (2)在(1)的条件下,若函数有三个零点,试求实数的取值范围.
4-4:坐标系与参数方程(本小题满分10分) 在直角坐标系中,曲线的参数方程为,在极坐标系中,曲线的极坐标 方程为. (1)求曲线的普通方程; (2)设与相交于两点,求的长.