如图,两条相交线段、的四个端点都在抛物线上,其中,直线的方程为,直线的方程为.(1)若,,求的值;(2)探究:是否存在常数,当变化时,恒有?
已知函数. (Ⅰ)求函数的最小正周期及最小值; (Ⅱ)若为锐角,且,求的值.
如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”. (Ⅰ)设是一对“4项相关数列”,求和的值,并写出一对“项相 关数列”; (Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由; (Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.
已知函数,. (Ⅰ)求函数的单调递增区间; (Ⅱ)设,,,为函数的图象上任意不同两点,若过,两点的直线的斜率恒大于,求的取值范围.
已知函数,. (Ⅰ)若函数的图象与轴无交点,求的取值范围; (Ⅱ)若函数在上存在零点,求的取值范围; (Ⅲ)设函数,.当时,若对任意的,总存在,使得,求的取值范围.
已知等差数列的前项和为,,且,. (Ⅰ)求; (Ⅱ)若,求的值和的表达式.