已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.(1)求椭圆C1的方程;(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.
(满分10分)已知函数(1)求的最小正周期和单调递增区间;(2)求在区间上的取值范围。
(满分12分)已知函数。(为常数,)(1)若是函数的一个极值点,求的值;(2)求证:当时,在上是增函数;(3)若对任意的,总存在,使不等式成立,求实数的取值范围。
(满分12分)已知圆O:,点P在直线上的动点。(1)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣弧长;(2)若点A(-2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0)。
(满分12分)定义在R上的奇函数有最小正周期4,且时,。(1)求在上的解析式;(2)判断在(0,2)上的单调性,并给予证明;(3)当为何值时,关于方程在上有实数解?
(满分12分)是等差数列的前项和,,。(1)求的通项公式;(2)设(是实常数,且),求的前项和。