在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=CD;(2)设DE交AC于G,若,CD=6,求FG的长
如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计). (1)求出y与x的函数关系式; (2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.
如图,在△ABC和△DCB中,AC与BD交于点E,且AC=BD,AB=CD. (1)求证:△ABC≌△DCB;(2)若∠AEB=70°,求∠EBC的度数.
先化简,再求值,其中.
如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M. (1)求证:△ACM≌△BCP; (2)若PA=1,PB=2,求△PCM的面积.
△ABC和△ECD都是等边三角形 (1)如图1,若B、C、D三点在一条直线上,求证:BE=AD; (2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BC与DE有怎样的位置关系?说明理由.