已知为公差不为零的等差数列,首项,的部分项、、恰为等比数列,且,,.(1)求数列的通项公式(用表示);(2)若数列的前项和为,求.
已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程。
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线的焦点。(1)求椭圆C的标准方程;(2)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若的值。
已知函数(1)当时,求函数的单调区间;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?
一个多面体的直观图和三视图如下:(其中分别是中点)(1)求证:平面;(2)求多面体的体积.
f(x)=x2+x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)令bn=,求数列{bn}的前n项和Tn