已知函数(1)当时,求的单调区间;(2)若在的最大值为,求的值.
(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分)某市教育局责成基础教育处调查本市学生的身高情况,基础教育处随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示:(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从各班身高最高的5名同学中各取一人,求甲班同学身高不低于乙班同学的概率.
(本小题满分12分)递减等差数列中,,,①求的通项公式.②若bn=,求的前n项和.
(本小题满分10分)选修;不等式选讲设函数.(1)解不等式;(2)求函数的最小值.
.给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程及其“伴随圆”方程;(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:。