已知双曲线方程为,①求该双曲线的实轴长、虚轴长、离心率、准线方程;②若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程。
已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点. 求证:(1); (2)
设函数[K] (1)若与具有完全相同的单调区间,求的值; (2)若当时恒有求的取值范围.
已知椭圆的焦距为,且过点. (1)求椭圆的方程; (2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.