(1)解方程:(2)已知命题命题且命题是的必要条件,求实数m的取值范围
某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。(1)求应从高级教师、中级教师、初级教师中分别抽取几人;(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。
有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据:(1)A、B二人预赛成绩的中位数分别是多少?(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合 适?请说明理由;(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
已知,设.(1)求函数的最小正周期,并写出的减区间;(2)当时,求函数的最大值及最小值.
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是,.(1)求的值;(2)求的值.
设为奇函数,为常数.(1)求的值;(2)证明在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.