设数列{an}的前n项和为Sn.已知a1=1,=an+1-n2-n-,n∈N*.(1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.
已知分别是椭圆的左、右 焦点,已知点 满足,且。设是上半椭圆上且满足的两点。(1)求此椭圆的方程;(2)若,求直线AB的斜率。
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润关于年产量的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
已知函数,(Ⅰ)求函数的最小值;(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数的取值范围.
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为。①求圆C的直角坐标方程;②设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。