已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为kn.(1)求数列{an}的通项公式;(2)若bn=2knan,求数列{bn}的前n项和Tn.
.已知函数(为常数),直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为1. (1)求直线l的方程及a的值;(2)当k>0时,试讨论方程的解的个数.
平面直角坐标系中,O为坐标原点,给定两点A(1,0)、B(0,-2),点C满足,其中,且 (1)求点C的轨迹方程;(2)设点C的轨迹与双曲线交于两点M、N,且以MN为直径的圆过原点,若双曲线的离心率不大于,求双曲线实轴长的取值范围.
设正数数列的前n次之和为满足= ①求,②猜测数列的通项公式,并用数学归纳法加以证明 ③设,数列的前n项和为,求的值.
已知函数. (1) 当m=0时,求在区间上的取值范围; (2) 当时,,求m的值.
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点. (Ⅰ)建立适当的平面直角坐标系,求曲线的方程; (Ⅱ)设过点的直线l与曲线相交于不同的两点、 若△的面积不小于,求直线斜率的取值范围.