如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.
分解因式:(1) (2) (3)
、(本题12分)如图,设抛物线C1:, C2:,C1与C2的交点为A, B,点A的坐标是,点B的横坐标是-2. (1)求的值及点B的坐标; (2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为,且与x轴交于点N.① 若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;② 若与△DHG的边DG相交,求点N的横坐标的取值范围.
、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像 进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向 ,再向下平移7单位,相应的朋友距离为 。(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。(3)探究三:为函数和它的基本函数,找到朋友路径,并求相应的朋友距离。
(本题10分)B船位于A船正东26km处,现在A、B两船同时出发,A船发每小时12km的速度朝正北方向行驶,B船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?
、(本题8分)如图,CD为⊙O的直径,点A在⊙O上,过点A作⊙O的切线交CD的延长线于点F。已知∠F=30°。(1)求∠C的度数;⑵若点B在⊙O上,AB⊥CD,垂足为E,AB=,求图中阴影部分的面积.