如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米。工人师傅把此物体搬到墙边,先将AB边放在地面(直线)上,再按顺时针方向绕点B翻转到△的位置(在上),最后沿的方向平移到△的位置,其平移的距离为线段AC的长度(此时恰好靠在墙边)。(1)求出AB的长;(2)求出AC的长;(3)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米)。
如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃. (1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围); (2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?
如图,AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若tan∠A=,BC=8,求⊙O的半径.
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-2,4),(2,1). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC关于y轴对称的△A′B′C′; (3)若△ADE是△ABC关于点A的位似图形,且E的坐标为(6,-2),则点D的坐标为 , 四边形BCED面积是.
如图所示的转盘,分成三个相同的扇形,3个扇形分别标有数字1、2、-3,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,重新转动转盘). (1)写出此情景下一个不可能发生的事件; (2)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数和为正数”发生的概率.
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成37°夹角,且CB=4米. (1)求钢缆CD的长度; (2)若AD=2.1米,灯的顶端E距离A处1.8米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:sing37°≈0.60,cos37°≈0.80,tan37°≈0.75)