已知函数,,其中.(Ⅰ)求的极值;(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.
已知函数的导函数为偶函数,且曲线在点处的切线的斜率为. (1)确定的值; (2)若,判断的单调性; (3)若有极值,求的取值范围.
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且. (1)求的长; (2)求二面角的正弦值.
已知函数. (1)求的最小正周期和最大值; (2)讨论在上的单调性.
一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率; (2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望. (注:若三个数满足 ,则称为这三个数的中位数).
选修4-5:不等式选讲 设a,b,c均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac; (Ⅱ).