如图所示,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.(1)求证:A,E,F,D四点共圆;(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
(本小题满分14分)如图1,在直角梯形ABCP中,AP//BC,APAB,AB=BC=,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将沿CD折起,使得平面ABCD, 如图2. (Ⅰ)求三棱椎D-PAB的体积; (Ⅱ) 求证:AP//平面EFG; (Ⅲ)求二面角G—EF-D的大小。
某超市为促销商品,特举办“购物有奖100﹪中奖”活动,凡消费者在该超市购物满100元,享受一次摇奖机会,购物满200元,享受两次摇奖机会,以此类推.摇奖机的结构如图所示,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落。小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋为一等奖,奖金为20元,落入B袋为二等奖,奖金为10元,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是 (Ⅰ)求:摇奖两次,均获得一等奖的概率; (Ⅱ)某消费者购物满200元,摇奖后所得奖金为X元,试求X的分布列与期望; (Ⅲ)若超市同时举行购物八八折让利于消费者活动(打折后不再享受摇奖),某消费者刚好消费200元,请问他是选择摇奖还是选择打折比较划算.
已知函数,是的导函数. (I)求:,及函数y=的最小正周期; (II)求:时,函数的值域。
((本小题满分14分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数的值,使得直线SM与平面SCD所成角为
(本小题满分14分) 已知数列的首项,,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前项和.