已知a,b,x,y均为正数且>,x>y.求证:>.
已知椭圆的离心率为,过顶点的直线与椭圆相交于两点. (1)求椭圆的方程; (2)若点在椭圆上且满足,求直线的斜率的值.
如图所示,矩形中,平面,,为上的点, 且平面 (1)求证:平面; (2)求证:平面; (3)求三棱锥的体积。
在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55. (1)求an和bn; (2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值 相等的概率.
已知向量,,若函数. (1)求的最小正周期; (2)若,求的最大值及相应的值; (3)若,求的单调递减区间.
在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为(α为参数)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系; (2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.