在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ=2sinθ与ρcosθ=1的交点Q的极坐标.
已知函数的图象经过点.(1)求的值; (2)求在点处的切线方程.
已知椭圆中心在原点,焦点在x轴上,离心率e=,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程。(O为原点)。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。
已知数列是一个等差数列,且,。(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值.