求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程.
如图,在直三棱柱 A B C - A 1 B 1 C 1 中, A 1 B 1 = A 1 C 1 , D , E 分别是棱 B C , C C 1 上的点(点 D 不同于点 C ),且 A D ⊥ D E , F 为 B 1 C 1 的中点.
求证:(1)平面平面; (2)直线 A 1 F / / 平面 A D E .
在 ∆ A B C 中,已知 A B ⇀ · A C ⇀ = 3 B A ⇀ · B C ⇀ . (1)求证: tan B = 3 tan A ; (2)若 cos C = 5 5 ,求 A 的值.
在 △ A B C 中,内角 A , B , C 的对边分别为 a , b , c .已知 cos A = 2 3 , sin B = 5 cos C . (1)求 tan C 的值; (2)若 a = 2 ,求 △ A B C 的面积.
已知 a > 0 , b ∈ R ,函数 f x = 4 a x 3 - 2 b x - a + b . (Ⅰ)证明:当 0 ≤ x ≤ 1 时, (ⅰ)函数 f x 的最大值为 | 2 a - b | + a ;
(ⅱ) f x + 2 a - b + a ⩾ 0 ; (Ⅱ) 若 - 1 ≤ f x ≤ 1 对 x ∈ [0,1]恒成立,求 a + b 的取值范围.
如图,椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 1 2 ,其左焦点到点 P ( 2 , 1 ) 的距离为 10 .不过原点 O 的直线 l 与 C 相交于 A , B 两点,且线段 A B 被直线 O P 平分.
(Ⅰ)求椭圆 C 的方程; (Ⅱ) 求 ∆ A B P 的面积取最大时直线 l 的方程.